All proper colorings of every colorable BSTS(15)

نویسندگان

  • Jeremy Mathews
  • Brett Tolbert
چکیده

A Steiner System, denoted S(t, k, v), is a vertex set X containing v vertices, and a collection of subsets of X of size k, called blocks, such that every t vertices from X are in exactly one of the blocks. A Steiner Triple System, or STS, is a special case of a Steiner System where t = 2, k = 3 and v = 1 or 3 (mod6) [7]. A Bi-Steiner Triple System, or BSTS, is a Steiner Triple System with the vertices colored in such a way that each block of vertices receives precisely two colors. Out of the 80 BSTS(15)s, only 23 are colorable [1]. In this paper, using a computer program that we wrote, we give a complete description of all proper colorings, all feasible partitions, chromatic polynomial and chromatic spectrum of every colorable BSTS(15).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal induced colorable subhypergraphs of all uncolorable BSTS (15)'s

A Bi-Steiner Triple System (BSTS) is a Steiner Triple System with vertices colored in such a way that the vertices of each block receive precisely two colors. When we consider all BSTS(15)s as mixed hypergraphs, we find that some are colorable while others are uncolorable. The criterion for colorability for a BSTS(15) by Rosa is containing BSTS(7) as a subsysytem. Of the 80 nonisomorphic BSTS(1...

متن کامل

Coloring with no 2-Colored P4's

A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic k-coloring can be refined to a star coloring with at most (2k2 − k) colors. Similarly, we prove that planar graphs have ...

متن کامل

Coloring Graphs Having Few Colorings Over Path Decompositions

Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (k−ǫ) poly(n) time algorithm for deciding if an n-vertex graph G with pathwidth pw(G) admits a proper vertex coloring with k colors unless the Strong Exponential Time Hypothesis (SETH) is false. We show here that nevertheless, when k > ⌊∆/2⌋+1, where ∆ is the maximum degree in the graph G, there is a better algorithm, at least when...

متن کامل

Near-Colorings: Non-Colorable Graphs and NP-Completeness

A graph G is (d1, . . . , dl)-colorable if the vertex set of G can be partitioned into subsets V1, . . . , Vl such that the graph G[Vi] induced by the vertices of Vi has maximum degree at most di for all 1 6 i 6 l. In this paper, we focus on complexity aspects of such colorings when l = 2, 3. More precisely, we prove that, for any fixed integers k, j, g with (k, j) 6= (0, 0) and g > 3, either e...

متن کامل

On the simultaneous edge coloring of graphs

A μ-simultaneous edge coloring of graph G is a set of μ proper edge colorings of G with a same color set such that for each vertex, the sets of colors appearing on the edges incident to that vertex are the same in each coloring and no edge receives the same color in any two colorings. The μ-simultaneous edge coloring of bipartite graphs has a close relation with μ-way Latin trades. Mahdian et a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Computer Science Journal of Moldova

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010